Accuracy of Generated Fractals

Note: I refer to the Mandelbrot set in general as the M-set for short.

When I was writing the post on Rough Mandelbrot Sets I tried out some variations on the rough set. One variation was to measure the generated M-set against a previously calculated master M-set of high precision (100000 iterations of z = z^2 + C). In the image below the master M-set is in white and the generated M-sets are in green (increasing in accuracy):

50 Against MasterHere instead of approximating with tiles I measured the accuracy of the generated sets against the master set by pixel count. Where P = \{ \text{set of all pixels} \} the ratio of P_{master} / P_{generated} produced something that threw me, the generated sets made sudden but periodic jumps in accuracy:

Graph OneLooking at the data I saw the jumps were, very roughly, at multiples of 256. The size of the image being generated was 256 by 256 pixels so I changed it to N by N for N = {120, 360, 680} and the increment was still every ~256. So I’m not really sure why, it might be obvious, if you know tell me in the comments!

I am reminded of the images generated from Fractal Binary and other Complex Bases where large geometric entities can be represented on a plane by iteration through a number system. I’d really like to know what the Mandelbrot Number System is…

Below is a table of the jumps and their iteration index:

Iterations Accuracy measure
255
256
0.241929
0.397073
510
511
0.395135
0.510806
765
766
0.510157
0.579283
1020
1021
0.578861
0.644919
1275
1276
0.644919
0.679819
1530
1531
0.679696
0.718911
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s